Lifting and Handling Loads – Part 2
Assessing Ergonomic Hazards

This is the second in a three-part series of Safety Bulletins dealing with the lifting and handling of loads.

Also known as manual handling or manual materials handling, the lifting and handling of loads including lifting, lowering, pushing, pulling, carrying, holding, dragging and supporting objects. The injuries caused by such work are referred to as musculoskeletal injuries, or MSIs. Readers of this Safety Bulletin should refer to the six-part Safety Bulletin series titled Musculoskeletal Injuries for additional detailed information.

The hazard assessment checklist

The purpose of performing a workplace hazard assessment is to identify specific workplace hazards that can cause or aggravate work-related materials handling injuries, and to then reduce worker exposure. Many checklists and assessment tools are available from a variety of sources. The hazard assessment checklist recommended for use by this Safety Bulletin is part of one that was introduced in May 2000 by the State of Washington, Department of Labor and Industries, as part of that state’s ergonomics legislation (WAC 296-62-051, Ergonomics). It was selected on the basis that
(1) it addresses very specific risk factors identified in the scientific literature as being related to materials handling injuries;
(2) it presents clear, specific exposure limits (time and angles) for worker exposure to the various risk factors, something that few other assessment tools provide;
(3) it is relatively simple to understand and can be applied by both employers and workers; and
(4) it is based on a comprehensive, multi-year literature review and public consultation process that involved industry, labour and the public.

The approach recommended by this Safety Bulletin does not, and cannot, eliminate all materials handling injuries. The approach will reduce the incidence and/or severity of injuries caused in whole or in part by the risk factors listed in the hazard assessment. Non-work exposures and risk factors inherent to the individual worker are not addressed.

Use of this hazard assessment checklist, as with any of the recommendations or recommended practices contained in the Safety Bulletins prepared by Alberta Human Resources and Employment, is voluntary. The use of other similar hazard assessment approaches is acceptable.

Is this a “caution zone job”?

A “caution zone job” is a job in which a worker’s typical work activities meet one or more of the physical risk factors and levels listed in Table 1. Typical work activities are those that are a regular and foreseeable part of the job and occur on more than one day per week, and more frequently than one week per year. Caution zone jobs all have a sufficient degree of risk to require that some modest precautionary steps be taken — ergonomic awareness training and a hazard assessment — but they do not necessarily have risks great enough to require corrective action. Caution zone jobs may not be hazardous. The durations listed in Table 1 — two hours for example — refer to the total amount of time per day workers are exposed to the risk factor, not how long they spend performing the work activity that includes the risk factor.

Actions employers should take

If there are no physical risk factors exceeding the levels listed in Table 1, then no actions are required.
If one or more physical risk factor exceeds the levels listed in Table 1, then the job is a caution zone job and the employer should provide the worker with ergonomics awareness training and perform a hazard assessment using the checklist presented in Table 2. The ergonomics awareness training is to provide workers with a basic level of understanding and knowledge. The training for workers should include
(a) how to use their workstation, including how to adjust its equipment and furnishings;
(b) how to use or select tools appropriate to the work they are performing;
(c) the safe work practices they are expected to follow; and
(d) information describing the signs, symptoms and methods of preventing materials handling injuries.

Every worker in a caution zone job, and the supervisors of these workers, should receive basic ergonomics awareness training.

A hazard assessment should be performed
(a) prior to the design and installation of a new workstation;
(b) when a work process or operation changes; and
(c) when a new work process is introduced.

When analyzing caution zone jobs using the checklist presented in Table 2, employers should do so in a thorough and systematic manner. This means paying attention to the physical demands of the job (such as body position, force, and repetition), the layout of the work area (such as reaches and working heights), and the load lifting and handling requirements of the job (such as object size and shape). Workers performing caution zone jobs should be encouraged to participate in the performance of the hazard assessment and any initiatives undertaken to reduce those hazards.
Table 1 Determining if a job is a caution zone job

<table>
<thead>
<tr>
<th>Physical Risk Factor</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awkward body positions</td>
<td></td>
</tr>
<tr>
<td>(1) Working with the hand(s) above the head, or the elbow(s) above the shoulder.</td>
<td>(1) More than 2 hours total per day.</td>
</tr>
<tr>
<td>(2) Working with the neck or back bent more than 30 degrees (without support and without the ability to change posture).</td>
<td>(2) More than 2 hours total per day.</td>
</tr>
<tr>
<td>(3) Squatting</td>
<td>(3) More than 2 hours total per day.</td>
</tr>
<tr>
<td>(4) Kneeling</td>
<td>(4) More than 2 hours total per day.</td>
</tr>
<tr>
<td>High hand force</td>
<td></td>
</tr>
<tr>
<td>(1) Pinching an unsupported object(s) weighing 900 grams or more (2 lbs) per hand, or pinching with a force of 180 Newtons or more (4 lbs) per hand (comparable to pinching half a ream of paper).</td>
<td>(1) More than 2 hours total per day.</td>
</tr>
<tr>
<td>(2) Gripping an unsupported object(s) weighing 4.5 kg or more (10 lbs) per hand, or gripping with a force of 340 Newtons or more (10 lbs) per hand (comparable to clamping light duty automotive jumper cables onto a battery).</td>
<td>(2) More than 2 hours total per day.</td>
</tr>
<tr>
<td>Highly repetitive motion</td>
<td></td>
</tr>
<tr>
<td>(1) Repeating the same motion with the neck, shoulders, elbows, wrists, or hands (excluding keying activities) with little or no variation every few seconds.</td>
<td>(1) More than 2 hours total per day.</td>
</tr>
<tr>
<td>(2) Performing intensive keying</td>
<td>(2) More than 4 hours total per day.</td>
</tr>
<tr>
<td>Heavy, frequent, or awkward lifting</td>
<td></td>
</tr>
<tr>
<td>(1) Lifting objects weighing more than</td>
<td></td>
</tr>
<tr>
<td>a) 34 kg (75 lbs) once per day; or</td>
<td></td>
</tr>
<tr>
<td>b) 25 kg (55 lbs) more than 10 times per day.</td>
<td></td>
</tr>
<tr>
<td>(2) Lifting objects weighing more than 4.5 kg (10 lbs) if done more than twice per minute.</td>
<td>(2) More than 2 hours total per day.</td>
</tr>
<tr>
<td>(3) Lifting objects weighing more than 11.4 kg (25 lbs) above the shoulders, below the knees, or at arm’s length more than 25 times per day.</td>
<td></td>
</tr>
</tbody>
</table>

If the hazard assessment determines that the physical risk factors exceed the levels listed in Table 2, then a hazard is present and the employer needs to take action. Each identified hazard should be reduced below the levels stated or to the degree technologically and economically feasible. The methods used to reduce the hazard(s) should not rely primarily on changes in worker behaviour. Examples of suitable methods for reducing hazards include:

- changes to the work stations and tools;
- reducing the size and weights of loads handled;
- process redesign to eliminate unnecessary steps or introduce task variety; and
- job rotation.
If an employer cannot reduce the hazard(s) below the hazard level using the controls described above, the employer should supplement those controls with interim measures that primarily rely on individual work practices or personal protective equipment. Examples of such practices include team lifting and training on work techniques. Since these are interim measures, the employer should continue to look for alternative measures that will address the hazard on a permanent basis.

Heavy, frequent, or awkward lifting

A question often asked by workers is “What is the maximum weight that I should be lifting at work?” The first response to this question is that there is no weight of load, however small, that guarantees complete safety from injury. The second response is that it is difficult, and often inappropriate, to state a single maximum weight of load. Many factors influence the weight that can be handled safely. These include:

(a) the starting height of the lift;
(b) the finishing height of the lift;
(c) the number of times the lift is performed in a period of time e.g. twice per hour, twice per minute, etc.;
(d) the length of time that lifting takes place e.g. 4-hour shift, 8-hour shift;
(e) the extent to which twisting of the body takes place;
(f) whether the lift is performed with one hand or two hands;
(g) the distance that the object is away from the body;
(h) the size, shape, and texture of the object;
(i) the presence of appropriately placed hand holds on the object;
(j) whether or not the lift must be performed in a space that restricts or prevents worker movement;
(k) the movement of an object with a changing centre of gravity e.g. a fluid freely moving in a container; and
(l) an object that is alive such as a person or animal.

The assessment checklist for heavy frequently or awkward lifting included in this Safety Bulletin was prepared by the State of Washington, Department of Labor and Industries (L&I) and is based on the Revised NIOSH Lifting Equation [NIOSH-National Institute for Occupational Safety and Health (U.S.)]. The equation was designed to help evaluate lifting tasks and reduce the incidence rate and severity of lower back injuries to workers.
To simplify use of the original equation, to provide employers with the opportunity to achieve practical implementation in the workplace, and to provide workers with an adequate level of safety, L&I made important changes to the original equation’s Lifting Index. Readers interested in more information on this issue should refer to page 78 of L&I’s Concise Explanatory Statement, listed in the references at the end of this Safety Bulletin.

Using the hazard assessment checklist

In many workplaces, more than one worker may do identical or essentially the same jobs. It is not expected that employers will do a separate hazard assessment for every worker on every shift on every day. Representative sampling of very similar jobs may be used. For example, if ten workers load pallets all day, the employer may assess how several workers do the job rather than all ten. While employers may choose to use representative sampling, they should design the sampling strategy carefully and appropriately.

For example, a different sampling method might be needed for risk factors influenced by the size of individual workers. A short worker on a particular job may work with his or her hands above the head while a taller worker might not. Choosing several average size workers for representative sampling would not be sufficient to identify those workers in the caution zone. An alternate, more effective approach might be to evaluate the postures used by the workers at the two extremes of size as well as the average or midrange.

It is acceptable practice to observe typical periods of work and calculate or estimate what the full day exposure would be as long as there is a reasonable basis for believing that the period of observation is representative. For example, consider a job in which a worker performs the same five-minute sequence of work repetitively for six hours every day and 2 minutes of each five-minute sequence (or 40%) is spent inspecting parts with the neck bent. The employer could observe several work cycles and then calculate that 40% of six hours or 2.4 hours is spent with the neck bent.
It is also permissible to rely on previous knowledge, evidence established for other purposes (e.g. time motion studies or job safety analysis), or job descriptions instead of direct job observation as long as there is a reasonable basis to believe that such information or knowledge is accurate, representative and sufficiently detailed. Production data could be used to estimate the number of lifts per day for materials handling jobs. If the employer has intimate knowledge of regular work activities, duration of exposures may be estimated with or without direct observation of the work. Where regular work activities are not well known to the employer, worker interviews can be used to identify typical work. The employer could then observe relatively short sample periods of actual work to validate the interview information.

In the case of jobs with intermittent, unpredictable or highly variable tasks, the following steps should be followed when performing the assessment:

- First, it is necessary to identify or list the different “typical work activities” that are part of the various tasks performed by the worker(s) doing a given job. Where this is not well known to the employer initially, this can be accomplished by observing worker(s) performing the tasks and/or by asking worker(s) to identify the different tasks they perform. It is important in this first step to determine all the major tasks typically performed by the worker(s) as a routine part of their overall job over time, including tasks that vary from day-to-day.

In workplaces where several different workers perform essentially the same job, a separate hazard analysis does not need to be performed on all workers, on all work shifts, on all days. A representative sample of workers performing the same job should be observed performing the tasks, including workers of different sizes (e.g. short, average and tall heights) where such individual differences might affect the outcome of the hazard analysis. One or more workers can be interviewed to help identify the range of tasks they perform and to help estimate the approximate percentage of their time spent performing the various tasks (this can be per day, per week, per job, or whatever measure is appropriate for this job).
Second, determine whether or not the risk factor limits are exceeded. The tasks identified in step one (for this job) are analyzed to determine whether they include one or more of the specific physical risk factors listed in the risk factor table, and whether the risk factor(s) for this job exceed the limits. Hazard contribution times from the different tasks are “added up” to make this determination. Where this information is not readily available to the employer from past/present knowledge (e.g. from existing job descriptions, time motion studies, job safety analyses, production data, etc.), it must be determined.

One way to determine the hazard contribution from one of several tasks is to determine the percentage of overall job time spent performing this one task, and then determine the percentage of time during that task that the worker is exposed to the ergonomic risk factor. For example, a task done for four hours that involves working with the hands above the head only ¼ of the time results in an awkward body position risk factor duration (for that one task) of 1 hour per day. Similar calculations are done for all the other task components of the job, and for each risk factor that is present. The calculation can be done for a day, a week, the duration of the job, or whatever interval is appropriate for that particular job. For comparison with the limits specified in the table, the total risk factor exposure numbers should be converted to a daily basis.
<table>
<thead>
<tr>
<th>Body Part</th>
<th>Physical Risk Factor</th>
<th>Duration</th>
<th>Visual Aid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulders</td>
<td>Working with the hand(s) above the head or the elbow(s) above the shoulder(s)</td>
<td>More than 4 hours total per day</td>
<td>θ</td>
</tr>
<tr>
<td></td>
<td>Repetitively raising the hand(s) above the head or the elbow(s) above the shoulder(s) more than once per minute</td>
<td>More than 4 hours per day</td>
<td>θ</td>
</tr>
<tr>
<td>Neck</td>
<td>Working with the neck bent more than 45° (without support or the ability to vary posture)</td>
<td>More than 4 hours total per day</td>
<td>θ</td>
</tr>
<tr>
<td>Back</td>
<td>Working with the back bent forward more than 30° (without support or the ability to vary posture)</td>
<td>More than 4 hours total per day</td>
<td>θ</td>
</tr>
<tr>
<td></td>
<td>Working with the back bent forward more than 45° (without support or the ability to vary posture)</td>
<td>More than 2 hours total per day</td>
<td>θ</td>
</tr>
<tr>
<td>Body Part</td>
<td>Physical Risk Factor</td>
<td>Duration</td>
<td>Visual Aid</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Knees</td>
<td>Squatting</td>
<td>More than 4 hours total per day</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knelling</td>
<td>More than 4 hours total per day</td>
<td></td>
</tr>
</tbody>
</table>

Check (3) here if this is an MSI hazard.
<table>
<thead>
<tr>
<th>Body Part</th>
<th>Physical Risk Factor</th>
<th>Combined with</th>
<th>Duration</th>
<th>Visual Aid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arms, wrists, hands</td>
<td>Pinching an unsupported object(s) weighing 900 grams or more (2 lbs) per hand, or pinching with a force of 180 Newtons or more (4 lbs) per hand (comparable to pinching half a ream of paper)</td>
<td>Highly repetitive motion</td>
<td>More than 3 hours total per day</td>
<td>θ</td>
</tr>
<tr>
<td></td>
<td>Wrist bent in flexion 30° or more, or in extension 45° or more, or in ulnar deviation 30° or more</td>
<td></td>
<td>More than 3 hours total per day</td>
<td>θ</td>
</tr>
<tr>
<td></td>
<td>No other risk factors</td>
<td></td>
<td>More than 4 hours total per day</td>
<td>θ</td>
</tr>
<tr>
<td>Arms, wrists, hands</td>
<td>Gripping an unsupported object(s) weighing 4.5 kg or more (10 lbs) per hand, or gripping with a force of 340 Newtons or more (10 lbs) per hand (comparable to clamping light duty automotive jumper cables onto a battery)</td>
<td>Highly repetitive motion</td>
<td>More than 3 hours total per day</td>
<td>θ</td>
</tr>
<tr>
<td></td>
<td>Wrist bent in flexion 30° or more, or in extension 45° or more, or in ulnar deviation 30° or more</td>
<td></td>
<td>More than 3 hours total per day</td>
<td>θ</td>
</tr>
<tr>
<td></td>
<td>No other risk factors</td>
<td></td>
<td>More than 4 hours total per day</td>
<td>θ</td>
</tr>
</tbody>
</table>
Highly Repetitive Motion

<table>
<thead>
<tr>
<th>Body Part</th>
<th>Physical Risk Factor</th>
<th>Combined with</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck, shoulders, elbows, wrists, hands</td>
<td>Using the same motion with little or no variation every few seconds (excluding keying activities)</td>
<td>No other risk factors</td>
<td>More than 6 hours total per day</td>
</tr>
<tr>
<td></td>
<td>Using the same motion with little or no variation every few seconds (excluding keying activities)</td>
<td>Wrist bent in flexion 30° or more, or in extension 45° or more, or in ulnar deviation 30° or more AND High, forceful exertions with the hand(s)</td>
<td>More than 2 hours total per day</td>
</tr>
<tr>
<td>Intensive keying</td>
<td>Awkward posture, including wrists bent in flexion 30° or more, or in extension 45° or more, or in ulnar deviation 30° or more</td>
<td>No other risk factors</td>
<td>More than 7 hours total per day</td>
</tr>
</tbody>
</table>
Table 2 Hazard assessment checklist (continued)

Heavy, Frequent or Awkward Lifting

This analysis only applies to “caution zone jobs” where workers lift 4.5 kg or more (10 lbs), use both hands, and are not seated or kneeling while lifting. For lifting with one hand or while seated or kneeling, use the “High Hand Force” section of this checklist.

Step 1
Find out the actual weight of objects that the worker lifts.

Actual Weight = _______ lbs.

Step 2
Determine the Unadjusted Weight Limit. Where are the employee’s hands when they begin to lift or lower the object? Mark that spot on the diagram below. The number in that box is the Unadjusted Weight Limit in pounds.

Step 3
Find the Limit Reduction Modifier. Find out how many times the worker lifts per minute and the total number of hours per day spent lifting. Use this information to look up the Limit Reduction Modifier in the table below.

<table>
<thead>
<tr>
<th>How many lifts per minute?</th>
<th>For how many hours per day?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 hr or less</td>
</tr>
<tr>
<td>1 lift every 2-5 mins.</td>
<td>1.0</td>
</tr>
<tr>
<td>1 lift every min</td>
<td>0.95</td>
</tr>
<tr>
<td>2-3 lifts every min</td>
<td>0.9</td>
</tr>
<tr>
<td>4-6 lifts every min</td>
<td>0.85</td>
</tr>
<tr>
<td>6-7 lifts every min</td>
<td>0.75</td>
</tr>
<tr>
<td>8-9 lifts every min</td>
<td>0.6</td>
</tr>
<tr>
<td>10+ lifts every min</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Note: For lifting done less than once every five minutes, use 1.0

Step 4
Calculate the Weight Limit. Start by copying the Unadjusted Weight Limit from Step 2.

Unadjusted Weight Limit: = _______ lbs.

If the worker twists sideways more than 45 degrees while lifting, reduce the Unadjusted Weight Limit by multiplying by 0.85. Otherwise, use the Unadjusted Weight Limit.

Twisting Adjustment: = _______

Adjusted Weight Limit: = _______ lbs.

Multiply the Adjusted Weight Limit by the Limit Reduction Modifier from Step 3 to get the Weight Limit.

Limit Reduction Modifier: _______

Weight Limit: = _______ lbs.

Step 5
Is this a hazard? Compare the Weight Limit calculated in Step 4 with the Actual Weight lifted from Step 1. If the Actual Weight lifted is greater than the Weight Limit calculated, then the lifting is an MSI hazard and should be reduced below the hazard level or to the degree technologically and economically feasible.

Unadjusted Weight Limit: = _______ lbs.

Note: If the job involves lifts of objects with a number of different weights and/or from a number of different locations, use Steps 1 through 5 above to:

1. Analyze the two worst case lifts — the heaviest object lifted and the lift done in the most awkward posture.
2. Analyze the most commonly performed lift. In Step 3, use the frequency and duration for all of the lifting done in a typical workday.
Other safety bulletins in this series

This three-part series of Safety Bulletins consist of the following titles:

 Lifting and Handling Loads Part 1 – Reviewing the Issues – BCL001

 Lifting and Handling Loads Part 2 – Assessing the Hazards – BCL002

 Lifting and Handling Loads Part 3 – Reducing the Hazards – BCL003

A companion series specific to musculoskeletal injuries is also available. It consists of the following titles:

 Musculoskeletal Injuries Part 1 – Alberta Injury Statistics and Costs – ERG017

 Musculoskeletal Injuries Part 2 – Symptoms and Types of Injuries – ERG018

 Musculoskeletal Injuries Part 3 – Biomechanical Risk Factors – ERG019

 Musculoskeletal Injuries Part 4 – Workplace Risk Factors – ERG020

 Musculoskeletal Injuries Part 5 – Assessing Ergonomic Hazards – ERG021
Musculoskeletal Injuries Part 6 – Reducing Ergonomic Hazards – ERG022

References

Department of Labor and Industries, State of Washington. *Concise Explanatory Statement* (RCW 34.05.325.6a) WAG 296-62-051, Ergonomics. May 5, 2000

Note: Each of the Department of Labour and Industries referenced are available at the following web address:

www.lni.wa.gov/wisha/regs/ergo2000
Contact us:

Province-Wide Contact Centre

- Edmonton & surrounding area: (780) 415-8690
- Throughout Alberta: 1-866-415-8690

Deaf or hearing impaired
- In Edmonton: (780) 427-9999
- 1-800-232-7215 throughout Alberta

Web Site

- www.worksafely.org

Getting copies of OHS Act, Regulation & Code:

Queen’s Printer

- www.qp.gov.ab.ca
- Edmonton (780) 427-4952

Workplace Health and Safety

- www.whs.gov.ab.ca/whs-legislation

Call any Government of Alberta office toll-free
Dial 310-0000, then the area code and telephone number you want to reach

© 2006-2007, Government of Alberta, Human Resources and Employment

This material may be used, reproduced, stored or transmitted for non-commercial purposes. The source of this material must be acknowledged when publishing or issuing it to others. This material is not to be used, reproduced, stored or transmitted for commercial purposes without written permission from the Government of Alberta, Human Resources and Employment. This material is to be used for information purposes only no warranty express or implied is given as to the accuracy or the timeliness of the material presented.